公开数据集统一放在 root/datasets 路径下,大家可以通过复制/软链接进行调用哦!

数据集详情页涵盖所属标签以及数据集的基本说明。数据集格式等具体信息可点击数据集来源链接查看哦~

ILSVRC 2015

数据集大小105.0 GB

更新时间2021-08-02 16:39:05

数据集标签
人体物体识别分类目标检测

数据集路径

数据集无需解压和下载,可直接在代码中更改数据集路径使用

/datasets/ILSVRC2015/

数据集简介

ImageNet Large Scale Visual Recognition. The training and validation data for the object detection task will remain unchanged from ILSVRC 2014. The test data will be partially refreshed with new images for this year's competition. There are 200 basic-level categories for this task which are fully annotated on the test data, i.e. bounding boxes for all categories in the image have been labeled. The categories were carefully chosen considering different factors such as object scale, level of image clutterness, average number of object instance, and several others. Some of the test images will contain none of the 200 categories. The data for the classification and localization tasks will remain unchanged from ILSVRC 2012 . The validation and test data will consist of 150,000 photographs, collected from flickr and other search engines, hand labeled with the presence or absence of 1000 object categories. The 1000 object categories contain both internal nodes and leaf nodes of ImageNet, but do not overlap with each other. A random subset of 50,000 of the images with labels will be released as validation data included in the development kit along with a list of the 1000 categories. The remaining images will be used for evaluation and will be released without labels at test time. The training data, the subset of ImageNet containing the 1000 categories and 1.2 million images, will be packaged for easy downloading. The validation and test data for this competition are not contained in the ImageNet training data.

数据集说明

数据集包括3862 snippets用于训练,555 snippets用于验证,937 snippets用于测试。 每个snippet包括56~458帧图像不等。 视频中的目标检测,类似目标检测任务的风格。该任务有30个基本类别,是目标检测任务200个基本类别的子集。这些类别都是精心选择的,考虑到不同因素,如运动类型,视频背景干扰,平均目标数目等。所有类别在每个帧都完全打标签。 30个类别为: n02691156 1 airplane 飞机 n02419796 2 antelope 羚羊 n02131653 3 bear 熊 n02834778 4 bicycle 自行车 n01503061 5 bird 鸟 n02924116 6 bus 公交 n02958343 7 car 小汽车 n02402425 8 cattle 牛 n02084071 9 dog 狗 n02121808 10 domestic_cat 猫 n02503517 11 elephant 大象 n02118333 12 fox 狐狸 n02510455 13 giant_panda 熊猫 n02342885 14 hamster 仓鼠 n02374451 15 horse 马 n02129165 16 lion 狮子 n01674464 17 lizard 蜥蜴 n02484322 18 monkey 猴子 n03790512 19 motorcycle 摩托车 n02324045 20 rabbit 兔子 n02509815 21 red_panda 红熊猫 n02411705 22 sheep 羊 n01726692 23 snake 蛇 n02355227 24 squirrel 松鼠 n02129604 25 tiger 老虎 n04468005 26 train 火车 n01662784 27 turtle 海龟 n04530566 28 watercraft 船只 n02062744 29 whale 鲸鱼 n02391049 30 zebra 斑马